Cell Wall Metabolism in Response to Abiotic Stress.
نویسندگان
چکیده
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
منابع مشابه
Stress response in cyanobacteria
Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decrease...
متن کاملComparative transcriptomic profiling of Vitis vinifera under high light using a custom-made array and the Affymetrix GeneChip.
Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reactive oxygen species. Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro. To determine whether the underlying pathways ...
متن کاملBiological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under alte...
متن کاملAnalysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has...
متن کاملTranscriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis.
Mechanical wounding not only damages plant tissues, but also provides pathways for pathogen invasion. To understand plant responses to wounding at a genomic level, we have surveyed the transcriptional response of 8,200 genes in Arabidopsis plants. Approximately 8% of these genes were altered by wounding at steady-state mRNA levels. Studies of expression patterns of these genes provide new infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plants
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2015